

This document consists of 16 printed pages.

© UCLES 2021

[Turn over

Cambridge International AS & A Level

COMPUTER SCIENCE 9608/21

Paper 2 Fundamental Problem-Solving and Programming Skills October/November 2021

MARK SCHEME

Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the
examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the
details of the discussions that took place at an Examiners� meeting before marking began, which would have
considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for
Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2021 series for most
Cambridge IGCSE�, Cambridge International A and AS Level components and some Cambridge O Level
components.

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 2 of 16

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers.
They should be applied alongside the specific content of the mark scheme or generic level descriptors
for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

• the specific content of the mark scheme or the generic level descriptors for the question

• the specific skills defined in the mark scheme or in the generic level descriptors for the question

• the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

• marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
is given for valid answers which go beyond the scope of the syllabus and mark scheme,
referring to your Team Leader as appropriate

• marks are awarded when candidates clearly demonstrate what they know and can do

• marks are not deducted for errors

• marks are not deducted for omissions

• answers should only be judged on the quality of spelling, punctuation and grammar when these
features are specifically assessed by the question as indicated by the mark scheme. The
meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed
instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question
(however; the use of the full mark range may be limited according to the quality of the candidate
responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should
not be awarded with grade thresholds or grade descriptors in mind.

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 3 of 16

Question Answer Marks

1(a) One mark per row

Variable New identifier name

Var1 Rainfall / DailyRainfall

Var2 AvgWindSpeed

Var3 StationID / WeatherStationID /
StationIDNo / WeatherStationIDNo

3

1(b) One mark per row.

Pseudocode expression Evaluates to

LENGTH(HouseCount) > 6 "ERROR"

MOD(INT(Turnout2018) * 3, 4) 0

ASC(TidalRiskCategory) + Turnout2018 87.23

IsConservationArea AND (HouseCount <=
50)

FALSE

MID(StationLocationName, 1, 5) &
" Eleven"

"Ocean Eleven"

5

1(c) 1 mark for error:

• Function expects a real parameter, but parameter is a string // Data type
mismatch (between the parameter and the data passed)

1 mark for the correct function header:
FUNCTION ProcessVars(DataItem : STRING) RETURNS REAL

2

1(d) 1 mark for each description.

Breakpoints

• Point set where code stops running

Report (watch) window

• shows the content of all data structures/variables/constants during the
execution

Single stepping

• One line of code is run and then it pauses

3

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 4 of 16

Question Answer Marks

2(a)(i) Count-controlled loop 1

2(a)(ii) One mark per row.

The scope of the variable Message is Global

The start and end line numbers of a selection
structure

12, 15

The identifier name of a user-defined function is CharacterCount

An arithmetic operator used in the function is + // -

4

2(b) One mark for line number and corrected line.

• Line 06
DECLARE ThisChar : CHAR / STRING

• Line 08

LetterCount ← 0

• Line 10

FOR Index ← 1 TO LENGTH(Message)

FOR Index ← 0 TO LENGTH(Message)-1

• Line 11

ThisChar ← MID(Message, Index, 1)

01 DECLARE Message: STRING
02
03 FUNCTION CharacterCount(Letter : CHAR) RETURNS
 INTEGER
04
05 DECLARE LetterCount, Index : INTEGER
06 DECLARE ThisChar : CHAR
07

08 LetterCount ← 0
09

10 FOR Index ← 1 TO LENGTH(Message)

11 ThisChar ← MID(Message, Index, 1)
12 IF ThisChar = Letter
13 THEN

14 LetterCount ← LetterCount + 1
15 ENDIF
16 ENDFOR
17 RETURN LetterCount
18 ENDFUNCTION

4

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 5 of 16

Question Answer Marks

2(c) One mark each to max 5
1 initialisation of counter data structure for each vowel
2 prompt and input the string
3 loop through length of input string �
4 � extract each character in the string and use CASE structure to

increment each counter variable �
5 � check for both lower case and upper case (by converting to

upper/lower or manual check of all)
6 � output each vowel with its count value once at appropriate point

PROCEDURE Frequency()

 DECLARE DataString : STRING
 DECLARE DataCharacter : CHAR
 DECLARE CountA, CountE, CountI, CountO,
 CountU : INTEGER
 DECLARE Index : INTEGER

 CountA ← 0

 CountE ← 0

 CountI ← 0

 CountO ← 0

 CountU ← 0

 Index ← 1

 OUTPUT "Enter string: "
 INPUT DataString

 FOR Index ← 1 to LENGTH(DataString)

 DataCharacter ← UCASE(MID(DataString, Index, 1))
 CASE OF DataCharacter

 'A' : CountA ← CountA + 1

 'E' : CountE ← CountE + 1

 'I' : CountI ← CountI + 1

 'O' : CountO ← CountO + 1

 'U' : CountU ← CountU + 1
 ENDCASE

 Index ← Index + 1
 ENDFOR

 OUTPUT "A: " & NUM_TO_STRING(CountA)
 OUTPUT "E: " & NUM_TO_STRING(CountE)
 OUTPUT "I: " & NUM_TO_STRING(CountI)
 OUTPUT "O: " & NUM_TO_STRING(CountO)
 OUTPUT "U: " & NUM_TO_STRING(CountU)

ENDPROCEDURE

5

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 6 of 16

Question Answer Marks

3(a) 1 mark each to max 8
1 declaration of appropriate constants for weight // declaration and

initialisation of appropriate variable to count cases for the flight
2 open the file "HOLD-CARGO.txt" in READ mode and close the file

3 conditional loop until end of file �
4 � read a line from the file
5 Extract flight number from each line in file..
6 � compare to parameter
7 Extract weight from each line in file
8 � convert to integer
9 � check if extracted weight > 50
10 If correct flight and over weight, extract and output Case ID
11 If correct flight and counter for flight is over 300, extract and output Case

ID �
12 � otherwise increment a counter for that flight

PROCEDURE CheckWeight(FlightNo: STRING)

 CONSTANT FileName = "HOLD-CARGO.txt"

 DECLARE CaseCounter : INTEGER
 DECLARE FlightData, CaseID : STRING

 CaseCounter ← 0

 OPENFILE FileName FOR READ

 WHILE NOT EOF(FileName)
 READFILE FileName, FlightData
 IF LEFT(FlightData, 5) = FlightNo
 THEN
 IF STRING_TO_NUM(RIGHT(FlightData,2)) <= 50 AND
 CaseCounter <= 300
 THEN

 CaseCounter ← CaseCounter + 1
 ELSE

 CaseID ← MID(FlightData, 6, 3)
 OUTPUT CaseID & " rejected"
 ENDIF
 ENDIF
 ENDWHILE

 CLOSEFILE FileName

ENDPPROCEDURE

8

3(b) One mark each

• One change can be reflected throughout the program

• The value of the constant cannot be accidentally changed

2

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 7 of 16

Question Answer Marks

3(c)(i) One mark each to max 2 e.g.

• Called from several places / reusability

• Reduces the length of the overall program code

• Less chance of errors as do not need to re-write / re-test

• One change in function will be applied in all places used

• Can use in multiple programs without rewriting

• Can share amongst other programmers to avoid everyone rewriting

2

3(c)(ii) One mark each to max 2

• Allows the use of functions that are difficult to code

• They (should) have been more extensively tested // Reduce the time to
test your code

• Reduce the time to write

2

3(d) One mark for name, two marks for description.
Name:

• By value

Description:

• (Copy of) value is passed

• Any local changes made are lost when the module terminates // does not
overwrite structure being passed

3

Question Answer Marks

4(a) 1 mark for each underlined part of the pseudocode.

PROCEDURE SafetyCheck()
 DECLARE Count : INTEGER
 DECLARE Index : INTEGER
 CONSTANT TreeCount = 20

 Count ← 0

 FOR Index ← 1 TO TreeCount // 20
 IF TreeAngle[Index] > 36
 THEN

 Count ← Count + 1
 ENDIF
 ENDFOR
 IF Count <= MainTrigger
 THEN
 OUTPUT "Maintenance not needed"
 ELSE
 OUTPUT "Maintain " & NUM_TO_STRING(Count) &
 " trees"
 ENDIF
ENDPROCEDURE

4

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 8 of 16

Question Answer Marks

4(b) 1 mark for each to max 7

1 Declarations of variable/constant/data structures have appropriate data

types
2 Procedure CheckTree taking an integer parameter
3 Prompt and input new angle
4 � attempt at validation of new angle
5 Loop 20 times �
6 � compare TreeAngle[loop counter, 1] with parameter �
7 � if found, store input value in TreeAngle[loop counter, 2]
8 � if found, compare new angle to 36
9 � and check if different to previous angle (one >36 and one is <= 36)
10 If parameter found (and angle changed), output message saying safety

status has changed
11 If parameter found, output message with reference number and "No

match"
12 If parameter not found in array display a suitable message
Example:
PROCEDURE CheckTree(TreeRef : INTEGER)

 DECLARE Index : INTEGER
 DECLARE PreviousAngle, Angle : INTEGER
 DECLARE PreviousStatus, NewStatus: STRING
 DECLARE Found : BOOLEAN

 CONSTANT TreeCount = 20
 CONSTANT SafeLimit = 36

 Found ← FALSE

 FOR Index ← 1 TO TreeCount
 IF TreeAngle[Index, 1] = TreeRef
 THEN

 Found ← TRUE

 PreviousAngle ← TreeAngle[Index, 2]
 OUTPUT "Tree angle: "
 INPUT Angle

 TreeAngle[Index, 2] ← Angle

 IF PreviousAngle <= SafeLimit
 THEN

 PreviousStatus ← "SAFE"
 ELSE

 PreviousStatus ← "UNSAFE"
 ENDIF
 IF Angle <= SafeLimit
 THEN

 NewStatus ← "SAFE"
 ELSE

 NewStatus ← "UNSAFE"
 ENDIF

7

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 9 of 16

Question Answer Marks

4(b) // check if safety status has changed
 IF PreviousStatus <> NewStatus
 THEN
 OUTPUT "Safety status has changed"
 ENDIF

 ENDIF
 ENDFOR

 // output "No match" if not found
 IF Found = FALSE
 THEN
 OUTPUT NUM_TO_STRING(TreeRef) & " No match"
 ENDIF

ENDPROCEDURE

Question Answer Marks

5(a) One mark each to max 2

• Shows module hierarchy / relationships

• Shows parameters passed between modules

• Shows module names

• Shows sequence of the modules

2

5(b) One mark for each row.

Parameter identifier Parameter letter

Quantity C // D

BookingID A

ItemCost D // C

TotalCost E

BookingDate B

5

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 10 of 16

Question Answer Marks

6(a) One mark each:

• Location declared as array, 10 000 elements of type string

• Loops 10000 times �

• � assign each index "22+VV"

Pseudocode solution:
DECLARE Location : ARRAY [1:10000] OF STRING
DECLARE Index : INTEGER

FOR Index ← 1 TO 10000

 Location[Index] ← "22+VV"
ENDFOR

3

6(b) One mark each:

• loop 10 000 times

• compare variable with each Location index

• if variable found in array, return index (stop loop)

• not found after checking all records, return −1

Example:

4

Start

Counter = 1

IS Counter
<= 10000?

Counter =
Counter + 1

IS
Location[Count

er] = Code?

Return −1

Return Counter

End

No

Yes

Yes

No

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 11 of 16

Question Answer Marks

6(c) 1 mark for each to max 6
1 Function heading and ending (where appropriate) including two

parameters (string and integer)
2 Loop until end of message (or " " or "." found)
3 Extract the character at the integer parameter start position
4 Compare each character to " " and "."
5 � if equal, break out of loop and return
6 � extracting geocode
7 Returning the extracted geocode

'Pseudocode' solution included here for development and clarification of mark
scheme.
Programming language example solutions appear in the Appendix.

FUNCTION RetrieveCode(EmailMsg : STRING,
 StartPos : INTEGER) RETURNS STRING

 DECLARE Index : INTEGER
 DECLARE GeoCode : STRING
 DECLARE NextChar : CHAR
 DECLARE EndOfGeoCode : BOOLEAN

 Index ← StartPos

 GeoCode ← ""

 EndOfGeoCode ← FALSE

 WHILE Index <= LENGTH(EmailMsg) AND
 EndOfGeoCode = FALSE

 NextChar ← MID(EmailMsg, Index, 1)
 IF (NextChar = ' ' OR NextChar = '.')
 THEN

 EndOfGeoCode ← TRUE
 ELSE

 GeoCode ← GeoCode & NextChar
 ENDIF

 Index ← Index + 1
 ENDWHILE

 RETURN GeoCode

ENDFUNCTION

6

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 12 of 16

Program Code Example Solutions

Q4 (b): Visual Basic

 Sub CheckTree(TreeRef As Integer)
 Dim Index As Integer
 Dim PreviousAngle, Angle As Integer
 Dim PreviousStatus, NewStatus As String
 Dim Found As Boolean

 Const TREECOUNT = 20
 Const SAFELIMIT = 36

 Found = False

 For Index = 1 To TREECOUNT
 If TreeAngle(Index, 0) = TreeRef Then
 Found = True
 PreviousAngle = TreeAngle(Index, 1)
 Console.Write("Tree angle: ")
 Angle = Console.ReadLine()
 TreeAngle(Index, 2) = Angle

 If PreviousAngle <= SAFELIMIT Then
 PreviousStatus = "SAFE"
 Else
 PreviousStatus = "UNSAFE"
 End If

 If Angle <= SAFELIMIT Then
 NewStatus = "SAFE"
 Else
 NewStatus = "UNSAFE"
 End If

 ' check if safety status has changed
 If PreviousStatus <> NewStatus Then
 Console.WriteLine("Safety status has changed")
 End If
 End If
 Next

 If Found = False Then
 Console.WriteLine(CStr(TreeRef) & " No match")
 End If
 End Sub

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 13 of 16

Q4 (b): Pascal

 procedure CheckTree(TreeRef: integer);
 const
 TREECOUNT = 20;
 SAFELIMIT = 36;
 var
 Index: integer;
 PreviousAngle, Angle: integer;
 PreviousStatus, NewStatus: string;
 Found: boolean;
 begin
 Found := false;
 for Index := 1 to TREECOUNT do
 begin
 if TreeAngle[Index,0] = TreeRef then
 begin
 Found := True;
 PreviousAngle := TreeAngle[Index, 1];
 write ('Tree angle: ');
 readln(Angle);
 TreeAngle[Index, 1] := Angle;

 if PreviousAngle <= SAFELIMIT then
 PreviousStatus := 'SAFE'
 else
 PreviousStatus := 'UNSAFE';
 if Angle <= SAFELIMIT then
 NewStatus := 'SAFE'
 else
 NewStatus := 'UNSAFE';

 // check if safety status has changed
 if PreviousStatus <> NewStatus then
 writeln('Safety status has changed');
 end;
 end; //for

 // output "No match" if not found
 if Found = False then
 writeln(TreeRef,' No match');
 end;

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 14 of 16

Q4 (b): Python

def CheckTree(TreeRef):
 #DECLARE Index : INTEGER
 #DECLARE PreviousAngle, Angle : INTEGER
 #DECLARE PreviousStatus, NewStatus: STRING
 #DECLARE Found : BOOLEAN

 TREECOUNT = 20
 SAFELIMIT = 36

 Found = False

 for Index in range(1, TREECOUNT):
 if TreeAngle[Index][0] == TreeRef:
 Found = True
 PreviousAngle = TreeAngle[Index][1]
 Angle = int(input("Tree angle:"))
 TreeAngle[Index][1] = Angle

 if PreviousAngle <= SAFELIMIT:
 PreviousStatus = "SAFE"
 else:
 PreviousStatus = "UNSAFE"

 if Angle <= SAFELIMIT:
 NewStatus = "SAFE"
 else:
 NewStatus = "UNSAFE"

 #check if safety status has changed
 if PreviousStatus != NewStatus:
 print("Safety status has changed")

 #output "No match" if not found
 if Found == False:
 print(str(TreeRef) + " No match")

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 15 of 16

Q6 (c): Visual Basic

 Function RetrieveCode(EmailMsg As String, StartPos As Integer) As String
 Dim Index As Integer
 Dim GeoCode As String
 Dim NextChar As Char
 Dim EndOfGeoCode As Boolean

 Index = StartPos
 GeoCode = ""
 EndOfGeoCode = False

 Do While (Index <= EmailMsg.Length) And (EndOfGeoCode = False)
 NextChar = EmailMsg.SubString(Index, 1)
 If NextChar = " " Or NextChar = "." Then
 EndOfGeoCode = True
 Else
 GeoCode = GeoCode & NextChar
 End If
 Index = Index + 1
 Loop
 Return GeoCode
 End Function

Q6 (c): Pascal

 function RetrieveCode(EmailMsg: string; StartPos: integer): string;
 var
 Index: integer;
 GeoCode: string;
 NextChar: string[1]; //char
 EndOfGeoCode: boolean;

 begin
 Index := StartPos;
 GeoCode := '';
 EndOfGeoCode := False;

 while (Index<=Length(EmailMsg)) and (EndOfGeoCode=False) do
 begin
 NextChar := MidStr(EmailMsg, Index, 1);
 if (NextChar=' ') or (NextChar='.') then
 EndOfGeoCode := True
 else
 GeoCode := GeoCode + NextChar;
 Index := Index + 1;
 end;
 RetrieveCode := GeoCode;
 end;

9608/21 Cambridge International AS & A Level � Mark Scheme
PUBLISHED

October/November
2021

© UCLES 2021 Page 16 of 16

Q6 (c): Python

def RetrieveCode(EmailMsg, StartPos):
 #DECLARE Index : INTEGER
 #DECLARE GeoCode : STRING
 #DECLARE NextChar : CHAR
 #DECLARE EndOfGeoCode : BOOLEAN

 Index = StartPos
 GeoCode = ""
 EndOfGeoCode = False

 while Index <= len(EmailMsg) and EndOfGeoCode == False:
 NextChar = EmailMsg[Index:Index+1]
 if NextChar == " " or NextChar == ".":
 EndOfGeoCode = True
 else:
 GeoCode = GeoCode + NextChar
 Index += 1

 return GeoCode

